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FairScene: Learning Unbiased Object Interactions
for Indoor Scene Synthesis

Zhenyu Wu, Ziwei Wang, Shengyu Liu, Hao Luo, Jiwen Lu, and Haibin Yan

Abstract—In this paper, we propose an unbiased graph neural
network learning method called FairScene for indoor scene
synthesis. Conventional methods directly apply graphical models
to represent the correlation of objects for subsequent furniture
insertion. However, due to the object category imbalance in
dataset collection and complex object entanglement with implicit
confounders, these methods usually generate significantly biased
scenes. Moreover, the performance of these methods varies
greatly for different indoor scenes. To address this, we propose
a framework named FairScene which can fully exploit unbiased
object interactions through causal reasoning, so that fair scene
synthesis is achieved by calibrating the long-tailed category dis-
tribution and eliminating the confounder effects. Specifically, we
remove the long-tailed object priors subtract the counterfactual
prediction obtained from default input, and intervene in the input
feature by cutting off the causal link to confounders based on the
causal graph. Extensive experiments on the 3D-FRONT dataset
show that our proposed method outperforms the state-of-the-art
indoor scene generation methods and enhances vanilla models
on a wide variety of vision tasks including scene completion and
object recognition.

Index Terms—Indoor scene synthesis, graph neural networks,
causal inference, counterfactuals, intervention.

I. INTRODUCTION

Recent years have witnessed the increasing requirements for
virtual models in 3D indoor scenes, because great progress has
been made in virtual and augmented reality (VR/AR) [10],
[41], [61], robot navigation [I1]l, [16], [6], interior design
(8], [19], [64], or can even create synthetic training datasets
for other indoor scene understanding tasks [17]]. Indoor scene
synthesis has aroused extensive interest in computer vision and
robotics due to the great efficiency in data collection. Given
an empty interior space with geometrical constraint including
the floor, ceiling, and walls, the indoor scene synthesis aim
to reasonably select the furniture and appliance for arrange-
ment. However, the indoor scene design requires experienced
architects to spend a couple of days completing the complex
task. Therefore, it is desirable to automatically synthesize
indoor scenes with the structural knowledge learned from the
annotated 3D indoor scenes, and can significantly reduce the
cost of producing datasets for indoor scene understanding
tasks.
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Fig. 1. Example of dataset bias visualization. (a) The object class distribution
in SUNCG, where the class with most objects contains about as 100X
samples as that with least objects. (b) The co-occurrence relationship among
different classes, where darker colors mean stronger correlation. (c¢) The biased
generation caused by long-tailed effects shown in (a). Doors are added with the
highest probability than the groundtruth class sofa because doors frequently
appear in the training set. (d) The biased generation caused by the confounder
object sofa, where a speaker should be placed in the object location due to the
existence of TV. Because of the strong co-occurrence relationship between
sofa and TV and that between sofa and shelf, the shelf is added with the
highest probability.

Due to the strong discriminative power and generalization
ability of deep learning [18]], [15], the deep indoor scene
synthesis models [37], [25]1, [66], [23], [33]l, [48]] have been
widely studied and yielded promising results. Those methods
utilize convolutional neural network (CNN) to learn the rich
visual semantics in annotated data [49], [37] or leverage
graph neural network (GNN) to mine the complicated object
structures in the training samples []3_3[] [125]], [48]]. However,
conventional methods employ simple relationships such as
“co-occurrence” that are insufficient to construct the layout
of complex indoor scenes. Some recent approaches further
refine the relationships between furniture objects such as
”supporting”, and “surrounding” to enhance the contextual
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information between objects and avoid confusion caused by
oversimplified relationships. However, the current approaches
have ignored the observation bias caused by the long tail of
dataset categories and scene confounding, which will lead to
poor realistic generated scenes. Since the 3D indoor scene
datasets are collected in natural distribution, unconstrained
learning with those annotated data usually leads to biased
prediction in two aspects. The first is the imbalanced object
categories in long-tailed distribution, which will significantly
bias the learned model to higher occurrence categories. Gen-
erating room layouts will also overfit with several object cate-
gories, which reduces the realism of the synthesized scene. The
second is the confounder objects in the complex scenes. Due
to biases in dataset annotation, common knowledge between
furniture objects can be confounded by observed contextual
biases. As shown in Fig.[I] (a) and (c), the number of doors is
much more than the sofa, so the learned model tends to select
the former with higher probability even without any significant
context. Fig. [1|(b) and (d) demonstrate the confounder objects
in the complex scenes. Although the causality link between
the TV and the shelf is weak, they are strongly correlated
due to their co-occurrence with the confounder object sofa.
As a result, the two types of biases degrade the plausibility of
synthesized indoor scenes with unreasonable object layouts.

In this paper, we present a FairScene method to learn

unbiased graph neural networks for automatic indoor scene
synthesis. Unlike conventional methods confounded by dataset
bias which directly leverage graphical models to represent
the object correlation for subsequent furniture and appliance
insertion, our method mines the object interaction by causal
inference instead of correlation learning further to reduce con-
textual bias. Therefore, the object category imbalance and the
confounder effects are eliminated based on the causal graph,
so that unbiased indoor scenes are synthesized with higher
plausibility. More specifically, we leverage GNN with message
passing to capture the structural information contained in the
context, where pre-defined relations including “supporting”,
”surrounding” and “co-occurring” are mined with recurrent
modules. Then we remove the long-tailed object priors in the
learned messages by subtracting the counterfactual messages,
which is acquired from the default input defined as average
node representation. Finally, we intervene the input scene
context by constrained object prediction to eliminate the
confounder effects, which is achieved via cutting off the causal
link to the confounders. Hence, unbiased indoor scenes are
generated with enhanced plausibility for downstream tasks.
We conduct extensive experiments on a wide variety of
downstream tasks including scene completion, object query
and object recognition with the 3D-FRONT dataset [42], and
the results show that our FairScene outperforms the state-of-
the-art indoor scene synthesis methods by a sizable margin.

In summary, our work consists mainly of the following

contributions:

1) We propose an unbiased indoor scene synthesis frame-
work based on causal inference named FairScene, which
effectively reduces prediction bias in layout generation.

2) We eliminate the long-tail effect caused by the unbal-
anced distribution of object classes in the dataset by

constructing counterfactual samples and further eliminate
the confounding effect through the intervention approach.

3) We evaluated FairScene on the 3D-FRONT public
dataset, and the extensive experimental results demon-
strate the effectiveness of the proposed approach.

II. RELATED WORK

In this section, we briefly review two related topics, includ-
ing indoor scene synthesis frameworks and causal inference.

A. Indoor Scene Synthesis

Indoor scene synthesis has received significant attention due
to alleviating the cost of complex and tedious handcrafted
scenes. According to the approach of parsing the relationship
between objects in a room, current frameworks can be divided
into three main categories: rule-based indoor scene synthesis,
non-parametric model indoor scene synthesis, and parametric
model indoor scene synthesis.

Rule-based indoor scene synthesis is aimed at parsing room
layouts based on handcrafted features and retrieves objects
from the dataset to place into the scene. Early work [57]]
applied the rule-based constraint to generate 3D object layouts,
which can quickly rearrange existing scenes by resetting the
preferences for placing indoor objects. Merrell et al. [26]
incorporated interior design principles as terms in the density
function and generated layout recommendations by sampling
the density function through a Monte Carlo algorithm. Fu
et al. [13] constructed an activity-related object relationship
graph by calculating the coexistence frequency of objects in
indoor scenes to generate reasonable scene layout suggestions.
Inspired by the work of [5]], several works focusing on mining
prior knowledge of datasets using co-occurrence analysis and
statistical models have been proposed. Weiss er al. [52]
presented a physically driven framework for continuous scene
synthesis, avoiding the slow and inefficient sampling from
different layout configurations caused by traditional methods
of random optimization. Xiong et al. [55] applied various
mechanical constraints to initialize the paths of scene objects
to target locations and constructed an interior scene system.
Zhang et al. [63] first proposed a strategy for representing
indoor scene layouts with coherent sets and introduced layout
properties to build a framework for scene composition with
human interests. Zhang et al. [62] accomplished employing
a spatial randomness (CSR) test to measure the strength of
object spatial relationships and generate room layouts accu-
rately based on the discrete prior provided by the sample, the
proposed method without the need to fit models.

Non-parametric model indoor scene synthesis aims to cap-
ture the relationships between furniture by statistically fitting
a scene prior to the dataset. Early work Yu et al. [59] extracted
the hierarchical and spatial relationships of each furniture
object in the current set to optimize realistic furniture layouts
by incorporating the statistical relationships between objects
into the objective function. In order to learn object priors from
the annotated data, data-driven indoor scene synthesis was
presented. Chen et al. [7] ensured semantic compatibility be-
tween the generated object model so that scene layouts can be
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generated from sparse low-quality RGB-D image inputs. Liu et
al. [24] further advanced the development of the image-based
synthesis of indoor scenes by incorporating segmentation
mask information into the scene generation framework, fully
utilizing the correspondence between RGB recognition results
and 3D models. Subsequent variants exploit the co-occurrence
or alignment of furniture objects with various primitive models
by different approaches. Yang et al. [|58|| normalized the output
of the synthetic model using parameter prior distributions
captured from the training dataset, and corrected infeasible
furniture layouts by predicting consistency constraints between
attributes. Qi et al. [36] applied a probabilistic grammar model
to resolve the indoor scenes into attribute spaces with or graph
S-AOG and sampled the new layout using a Monte Carlo
Markov chain.

Parametric indoor scene synthesis primarily focuses on
learning the relationship between furniture from the training
samples through the deep learning model. With the emergence
of large-scale indoor scene datasets (e.g. SUNCG [42] and
3D-FRONT [12]) and the achievements of deep learning [[18]],
deep neural network based methods [23], [25], [33], [37],
[48]], [66] were widely studied in recent years. Wang et al.
[49] and Ritchie et al. [37] encoded the scene images in
top-down views, and decoded the representation to sequen-
tially decide the existence, category, location, orientation and
dimension of new objects. Zhang et al. [65] utilized the
Variational AutoEncoders (VAE) [22]] coupled with Genera-
tive Adversarial Networks (GAN) [[15] to generate an object
matrix where each column represented the object location and
geometry attributes. Ostonv et al. [27] approximated room
layout generation as a proximal policy optimization problem,
and estimated the reward of placing objects at each iteration
with deep reinforcement learning. Paschalidou et al. [29]
proposed a novel autoregressive transformer architecture that
approximates scene synthesis and in-room object generation as
sequence and unordered generation. In order to fully leverage
the rich structural information in the context, graphical meth-
ods were proposed to mine the complex object correlation.
Zhou et al. [66] and Wang et al. [48|] proposed a graph
neural network for indoor scene synthesis where the edge
depicted the spatial and semantic correlation between objects.
Gao et al. [|14] proposed a hierarchical graphical network
for synthesizing interior scenes, directly synthesizing the fine
geometry of room layouts and furniture at a hierarchical
level, and employed functional areas as intermediate agents
for rooms and furniture to further ensure rationality.

Nevertheless, directly applying the graphical models to rep-
resent object correlation ignores the object category imbalance
and confounder effects in the dataset, leading to significantly
biased scene generation with unreasonable arrangements.

B. Causal Inference

In recent years, research based on causal inference has been
active in various fields. We first briefly introduce the widely
utilized latent outcome model and structural causal model, and
finally outline the application of causal inference to computer
vision.

The core of the potential outcome model is to compare
the effects of receiving the intervention and not receiving the
intervention for the same research object. Rubin [39] improved
the counterfactual inference framework by introducing an
allocation mechanism to describe the event. Imbens et al.
[20] defined potential outcomes as each pair of “intervention-
outcomes”’. Rubin [40] defined causal effects as differences in
potential outcomes of the same research object. The potential
outcome model argues that omitting covariates in observational
research can lead to serious causality inference bias. Bickel [4]
defined variables that affect the relationship measure between
two other variables as confounders and further concluded that
confounding effects in the conventional inference framework.
Rosenbaum [38]] proposed the inverse probability weighted
(IPW) estimation method to effectively eliminate the bias due
to the different distributions of covariates. In addition, the
stratification and matching methods can also eliminate the
confounding bias.

Structural causal models can visually represent the causal
relationships between multiple variables. Pearl [31], [32] pro-
posed the concept of external intervention based on Bayesian
networks, which further extended the formal representation
of causal relationships and inspired subsequent methods for
mining causal relationships from data. Based on the devel-
opment of human perception of things, [31] divided causal
relationships into three levels: association, intervention, and
counterfactual. The association is mainly represented by the
statistical correlation defined by the data, i.e., the relationship
between the joint distribution probabilities of the individual
variables. The intervention is expressed as changing the vari-
able data distribution, [30|] proposed using the do operation
to represent, which is applied mainly through the Correction
Formula, the Backdoor Criterion, and the Frontdoor Criterion.
The counterfactual is expressed as retroactive to the estimated
relationship between the variables. For counterfactual inputs,
structural causal models employ minimal interventions to
satisfy the proposed hypotheses and predict outcomes based
on past perceptions with added conditions.

The causal analysis has been proven to be very effective in
numerous research fields such as removing spurious bias [2],
[44], image super-resolution [21], disentangling model effects
[3]l, [67]] and acquiring generalizable features [28]], [51]]. Re-
cently, causal inference has been widely adopted in computer
vision. Tang et al. [45] debiased the scene graph generation
by drawing the counterfactual causality in the defined causal
graph, and utilized the Total Direct Effect to remove the long-
tailed priors. Wang et al. [S50] proposed Visual Commonsense
R-CNN for unbiased object detection, where the causal link
directed to the confounder was cut off and the model learned
sense-making knowledge instead of common co-occurrence.
Abbasnejad et al. [1] explored the bias in the dataset and
enhanced the generalization ability in visual question an-
swering (VQA) by counterfactual generation. Zhang et al.
[60] yielded pixel-level masks by only using the image-level
labels via the structural causal model analysis among images,
pixels, and labels. Xu et al. [56] employed counterfactual
interventions to maximize the difference between unintentional
and counterfactual intentional behaviors to enhance model
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Fig. 2. The pipeline of our FairScene. The object properties are leveraged to initialize the node features, and the concatenation of two node features yields
the messages between them and the corresponding attention. The GRU modules aggregate all messages directed to one node via the recurrent cells, and the
aggregated features containing messages about various kinds of relationships are applied to predict the updated features for given node features. The feature
update stops when achieving the iteration limit, where all final node features are summed with different weights to form the scene features. With the scene
features, the existence, location, class, and placement (orientation and size) of additional objects are predicted.

recognition performance.

In this paper, we extend causality inference to generate input
intervention and counterfactuals, through which the long-tailed
object category distribution is calibrated and the confounder
effects are eliminated in our unbiased indoor scene synthe-
sis. Inspired by the outstanding performance of transformer
network architecture on various visual tasks, recent work has
started to capture the high-level relationships between objects
with cross-attention mechanisms.

III. APPROACH

In this section, we first introduce the general pipeline of
our graph neural networks for indoor scene synthesis. Then
we present object category distribution calibration to remove
the long-tailed bias and propose confounder effect elimination
to obtain the unbiased indoor scene synthesis model. Finally,
we demonstrate the application of our FairScene in a wide
variety of vision tasks.

A. Parsing furniture layout

Following [48]], [49]], we sequentially add objects for indoor
scene synthesis. We define six fine-grained relationships as in
to strengthen the structure discrimination ability includ-
ing “’supporting”, ”supported by”, ”surrounding”, ~’surrounded
by”, ”"next to” and “co-occurring”. We identify the above six
relationships between two objects (A, B) by measuring the 3D
bounding boxes (Appox, Bbor) and category of the furniture
object, which are defined as follows:

”supporting” and ’supported by” : The supporting”
relationship exists when the bounding box of one object is
on top of the other. We further determine whether the center

Y T/ ]\ .
Pl M 03 IE

—

Chairs are surrounding the table

Fig. 3. Room furniture layout analysis visualization results. We display the
layout of three types of rooms: bedroom, dining room, and living room.
The green bounding boxes represent “co-occurrence” relationships, the brown
bounding boxes represent the “’surrounding” relationship and the dark green
bounding boxes represent the “next to” relationship(Best view in color).

point of A is in the top projection of By, to finalize
the B supporting A” relationship. “supported by” is the
inverse relationship.

”surrounding” and “’surrounded by” : We traverse the
whole scene with each object in the room as the center. For
object A, we first set the query radius R according to the size
of Appoz, Which can be described as:

R=(W+H)/2+ W2+ H2/2 (1)

where W and H are the length and width of App,,, respec-
tively. We further constrain the center points of the above set
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of objects to be in the same plane at the same time. Similarly,
“surrounded by” is the reversed relationship of ”surrounding”.

“next to” and co-occurring” : We finalize the “next to”
relationship by determining whether the shortest distance be-
tween the vertices of two objects’ bounding boxes is less than
a threshold value(the setting in this paper is 0.2 meters). As
for “co-occurring”, all objects in one room can be considered
to have this relationship.

Fig.[3|shows the results of the room layout parsing visualiza-
tion, which further justifies the selected six relationships. Com-
pared with previous methods, our approach precisely parses
furniture fine-grained layout relationships. For example, the
chairs and the tables are no longer in the usual “next to” or ”co-
occurring” relationships, but are defined as a more distinctive
“surrounding”. Meanwhile, for objects with significant “co-
occurring”, such as a bed and a nightstand, our “next to”
relationship provides more precise spatial location guidance
compared to “co-occurring.

B. Graph Networks for Indoor Scene Synthesis

Fig. shows the general pipeline of the graph neural
networks for indoor scene synthesis, which relies on message
passing graph convolution [48], [60]. At the t;, step for
sequential object addition, the ¢;5 node the in graph represents
the state of the i;, object with node feature h§ in the scene.
The edge between the 7., and j;;, nodes is denoted as eﬁj that
demonstrates the correlation between the i, and j;;, objects at
the t;;, step. The node feature is initialized with the function
finit as follows:

hY = finit (@i, Winit) 2

where x; € R is the input feature representing the object
category, location, orientation, and size of the 4;;, object in
the scene, and w,,;; means the parameters of the initialization
function. For information propagation in the graph, we first
calculate the edge message of the 7y, relation from the i, to
the j;, node at the 4, step:

ML= fnsg(hl B ) ©)

where fy,s, demonstrates the message function with the pa-
rameters w,sq. The attention weights of the message m:; is
denoted as a?;, which is calculated by the attention function

fatt with the parameters w,;:
,t
‘1;']- = fau(h, h;; Wart) “)

Then the messages to each node are aggregated with GRU
modules in the following way:

rt r,t r,t r,t,
9;; = fGRU(giJ‘_l;mi7j7ai7jawGRU) (5)

where g:; stands for the aggregated messages of the 7y,
relation from the 74, to the ji, node at the ¢, step, and foru
means the aggregating function with the parameters wgry.
The last cell of the GRU module yields the aggregated features
of the ry, relation for the iy, node at the t;, step, which is
denoted as g.**. Finally, the node feature h! is updated via the
following transition:

R = fupa(hl 9] b Wapa) ©)

where {g; ’t}r is the concatenation of the aggregated features
across all relationships to the iy, node at the ¢4, step. fupd
illustrates the node feature update function with the weight
Wypq. The features h for the scene containing /N objects are
acquired via h = Zf\il v;h!, where v; means the importance
weight of the 7;, object and T is the maximum iteration
number of graph update in each round of object addition. The
existence, location, class, and placement (orientation and size)
of additional objects are predicted based on the scene features.
However, due to the object category imbalance and the
confounder objects in the dataset, directly learning the graph-
ical model from the training data usually causes significantly
biased prediction. Our goal is to learn unbiased graph neural
networks with object category distribution calibration and
confounder effect elimination via causal inference.

C. Object Category Distribution Calibration

Due to the long-tailed distribution of dataset categories,
conventional indoor scene synthesis methods are severely
biased in capturing the relationships between objects, i.e., the
models prefer to predict the more high-frequency categories,
which obscures the basic common knowledge between objects.
Meanwhile, the explicit prior knowledge among furniture
objects will be hard to identify due to the solidified room
layout in the dataset, and the common-sense relationships
among objects will be confounded by observation bias. Fig.
A(a) and [d) illustrates the causal graph of indoor scene
synthesis for conventional methods and our FairScene. For
a given object, X represents the furniture and appliance that
provide beneficial context for sequential object addition, which
shows the clear causal link between the existing and added
objects instead of the trivial correlation. Y is the object to be
added and Z means the implicit confounder in indoor scene
generation. A stands for the attention of the message related
to X and the given object, which demonstrates the importance
of their correlation. The causal graph of conventional biased
indoor scene synthesis leads to two kinds of prediction bias:

« Since the 3D indoor scene datasets are collected in natural
distribution, the number of objects in each category
is significantly imbalanced. The indoor scene synthesis
model tends to add objects that appear more frequently
in the training dataset even without clear context, because
the biased prediction decreases the training loss faster.

o Despite the beneficial causal links X — Y and X —
A — Y, X may also impose influence on Y via the
confounder Z through the backdoor path X < Z — Y.
Even though the causal link between X and Y is weak,
the correlation learned by the conventional graphical
model can be very strong when the causal links Z — X
and Z — Y are both significant. The backdoor path
enforces the model to learn the illusion that X and Y
are clearly related.

Both the imbalanced object category distribution and the
confounder effect cause sizably biased scene generation. To
address these, we remove the long-tail effects via counterfac-
tual sample construction and eliminate the confounder effects
by input context intervention. Intervention and counterfactual



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

are two widely adopted techniques for causal analysis [32].
Intervention deletes all incoming links to a variable and assigns
a certain value, which means the variable is no longer affected
by its parents. Counterfactual sets the variable as the situation
that would never happen, and takes one more step further than
intervention.

However, the bias caused by category long-tail effects can
potentially help the model filter out implausible predictions
(e.g. toilets rarely appear in bedrooms). Therefore, we focus
on measuring biases that are positive for predicting object Y.
According to the causal graph shown in Fig. [dfa), the observed
object prediction with the given input x and implicit con-
founder z in conventional indoor scene synthesis methods is
written as Y,.(z). We denote the corresponding counterfactual
prediction with the implicit confounder z as Yz ,(z) with the
causal graph shown in Fig. [b), which is obtained by setting
input z as the mean features Z of all objects in the training set
and remaining the attention a unchanged. The counterfactual
prediction comes from the blank input with the object priors,
which are completely learned from the training set with long-
tail object category distribution. For example, we directly set
some nodes of X as a zero vector in the training phase.
Therefore, the prediction without biased object priors lies in
the difference between Y, (z) and Yz ,(z), which is dubbed as
Total Direct Effect (TDE) in causal inference [46], [47]]. The
TDE in the causal inference domain measures the proportion
of A in the effect of X — Y. Meanwhile, contextual bias can
be naturally eliminated between facts and counterfactuals. We
acquire the prediction f/w(z) without biased object priors of
input context z in the following:

Vi(2) = Ya(z) — Yeu(2) @)

The applied TDE does not introduce any additional parameters
and can be used as an off-the-shelf module in a wide range
of indoor scene synthesis methods. The resulting causal graph
after long-tailed category calibration is shown in Fig. []c),
where X¢ depicts the beneficial context object with the
balanced class distribution.

D. Confounder Effect Elimination

Realistic scene datasets are subject to unavoidable observa-
tional biases due to human annotation. Previous methods focus
only on mining the relationships between furniture objects
in the room layout and ignore the presence of confounding
factors. Although subtracting the counterfactual prediction
removes the bias caused by long-tailed category distribution,
the result from the causal graph shown in Fig. [[c) still
suffers from the confounder biases. Conventional indoor scene
synthesis methods predict the probability for object addition
in the following conditional probability, by Bayesian theorem
we can obtain:

P(Y|X,A) =Y P(Y|X, A 2)P(z|X) ®)
where the confounder effects are brought by the observational

bias P(z|X). The conventional method learns the relationship
X — Y by the likelihood P(X|Y) only but significantly

®)

(2)
N\ T
=0 @

Long-tailed
Effects Removal

Counterfactual
Generation

s

’

/ —
/
!

e

Confounder
Elimination
—_—

Fig. 4. The causal graph of (a) conventional scene synthesis, (b) the
counterfactual prediction, (c) scene generation with long-tailed effect removal,
and (d) unbiased scene generation with further confounder elimination. For
a given object, X means the furniture and appliance that provide beneficial
context with clear causal links for object addition, and Y is the object to
be added. A stands for the attention of messages related to X, and Z
represents the implicit confounder in indoor scene generation. X € depicts
X with balanced object category distribution.

suffers from the likelihood P(z|X) of the confounding factor
z with X. If z is frequently associated with X,Y, the
original common knowledge between X and Y will be covered
by z, which leads to serious bias in network learning and
prediction. Let us take Y as the nightstand and X as the
pillow in co-occurrence relationship mining for example. Since
P(z = bed|X = pillow) is very large, the most contribution
to the likelihood in (8) comes from P(Y = nightstand|X =
pillow,z = bed), where A is omitted for simplification.
Therefore, the estimation of P(z = bed|X = pillow) actu-
ally focuses on beds instead of pillows and leads to biased
object addition prediction. We can consider the ordered triad
{X,Z,Y} as a structural causal model (SCM), where Z is an
exogenous variable and X and Y are endogenous variables. To
explore the relationship between X and Y, we need to introduce
the concept of intervention in causal inference, which can
be written as do(-). The intervention operation can modify
the value of a node in the causal graph, e.g. do(X = x),
while removing all paths to that node. The causal relationship
between X and Y can be determined by observing the effect
of a change in the value of X on Y. In order to eliminate
the confounder bias, we intervene the input object feature by
cutting off the causal link between X and Z, and the prediction
probability is formulated as follows:

P(Y|do(X),A) =) P(Y|X,A,z)P(z) 9)

where do(X) means the intervention operation on X. By
applying the backdoor adjustment, the object prediction treats
each z fairly by considering the statistical prior P(z) instead
of P(z|X). Consequently, the confounder effect is eliminated
thoroughly, where the corresponding causal graph is depicted
in Fig. f(d).

Since the likelihood in (9) is intractable, we apply neural
networks to parameterize the probability. As shown in Fig. [2]
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Fig. 5. Object recognition in scenes. Left: Object recognition using con-
ventional 3D shape processing architectures. Right: Context-based object
recognition that fuses the shape and context information with enhanced
robustness.

P(Y|X = x;, A,z = x;) is parameterized by g:; which
fuses the information carried by the beneficial contextual
objects X, the message attention A and the confounder Z in
the scene. The conventional biased scene synthesis performs
expectation of g; Jt across all j via GRU module to aggregate
messages with z sampled from p(z|X), so that the likelihood
in (8) depicts biased object addition prediction. In order
to eliminate the confounder effects, we adjust the original
message aggregation process in the following by combining

(@) and ©):
r,t r,t) .

it it p(z =x;)
g;j = fGRU(gaj_17mi,j7 a; ; 2

10

where p(z = ;) means the probability that the category
of x; appears in the dataset, and p,(z = z;|X = x;)
demonstrates the probability that z; is correlated with x; via
the ry;, relationship in all training scenes. Both probabilities
are obtained via calculating the statistics in the training dataset.

E. Applications

In this section, we show the application of our FairScene in
a wide variety of vision tasks including scene completion and
object recognition in scenes.

Scene completion: Our FairScene generates the deficient
furniture and appliance in a scene based on the existing objects
and their relationship. For incomplete scenes, we first mine
the unbiased object correlation to form the scene features,
through which the existence, location, category, and placement
of the additional objects are predicted. The completeness of
the synthesized scenes can be controlled by the probability
from the existence predictor. Once the model predicts a low
probability for the existence of additional objects, the scene
can be regarded to be completed with sufficient objects.
Users can tune the furniture or appliance arrangement during
the iterative scene completion, which enables the interaction
between our scene synthesis model and human designers.

Object recognition in scenes: Recognizing objects in
3D scenes is challenging because objects across different
categories may share similar appearances and mislead the clas-
sifier. Conventional methods extract the volumetric [54]], multi-
view [43] or point cloud representations [34]] via the 3D shape
processing architectures, which are sensitive to the appearance
variance of objects. On the contrary, we recognize the objects
in 3D scenes via the context predictions from our FairScene.
We remove the object to be recognized in the scene and query
the location for object addition. The predicted object category
probability can be regarded as the object recognition results
only based on the scene context. By multiplying the object

Training Strategy
L

w/ F;re -train Dataset

W/0 Pre-train Dataset
Fig. 6. Synthetic data pre-training visualization process. The 3D visual
segmentation model is first pre-trained with a synthetic dataset, which allows
the model to learn some object feature information, and then fine-tuned on the
public dataset to meet downstream tasks. Compared with the original dataset
alone, the pre-training of the synthetic dataset can improve the accuracy of
object segmentation.
probability predicted by the conventional 3D shape processing
architectures and that yielded by our context predictions, we
obtain robust object recognition in 3D scenes. Fig. [5] shows
the comparison between our conventional and context-based
object recognition in 3D scenes, where the latter achieves
higher robustness.

Pre-training dataset synthesis: The process is illustrated
in Fig. [6] Our proposed FairScene can synthesize new scenes
based on a priori knowledge of the dataset to meet the demand
for large training data for 3D visual understanding tasks.
Since it is synthesized by a simulator, our approach can be
quickly deployed in unmanned system simulation sessions
such as robot indoor cruising and exploration perception. Pre-
training the visual perception model with synthetic datasets
helps to further improve the model performance. Compared to
traditional datasets, synthetic datasets have the following ad-
vantages: (1) Synthetic datasets can be automatically labeled,
significantly reducing the cost of dataset labeling while further
improving labeling accuracy and reducing the difficulty of
model learning features. (2) Influenced by the prior knowledge
of the dataset and causal inference, our proposed FairScene
can alleviate the long-tail effect of traditional training samples
and generate a more reasonably distributed training set by
artificially setting the ratio. (3) Synthetic datasets can generate
a large number of training samples, which can effectively
support deep learning model pre-training.

IV. EXPERIMENTS

In this section, we first introduce the dataset and imple-
mentation details in our experiments and then evaluate our
FairScene via qualitative visualization and quantitative per-
ceptual study of the generated scenes. Moreover, we compare
our method with the state-of-the-art scene synthesis methods
in a wide variety of vision tasks including object query and
object recognition in scenes.

A. Datasets and Implementation Details

We carried out all experiments on the 3D-FRONT [12]
dataset. 3D-FRONT is a large-scale synthetic 3D scene dataset
with dense volumetric annotations, which contains 6813
houses and has approximately 18,797 rooms. To meet the
diversity of scenes, 3D-FRONT offers 7302 pieces of furniture
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TABLE I
PERCENTAGE (WITH STANDARD ERROR) OF FORCED-CHOICE
COMPARISONS ON WHICH SCENES GENERATED BY FAIRSCENE ARE
JUDGED TO BE MORE PLAUSIBLE THAN OTHER METHODS.

Room Type FairScene vs.
SceneGraphNet | Real
Bedroom 54.1+2.7 43.9+3.8
Living Room 58.2+3.8 39.1+£4.2
Library 53.7+3.2 52.54+2.6
Dining Room 57.94£2.9 48.243.5

with high-quality textures. As for training and testing, We
applied rooms of four different types (Living room, Bedroom,
Library, and Dining room) in 3D-FRONT. After dataset pre-
processing and filtering out rooms with non-conforming cate-
gories or object texture vestiges, we ended up with 1848 living
rooms, 4526 bedrooms, 1585 libraries, and 5780 dining rooms.
To meet the training requirements, we further merged the
categories of some furniture instances to simplify the training
process. We finally selected 45 furniture categories for the
living room, 43 for the bedroom, 41 for the library, and 45
for the dining room. Following [66], we trained independent
models for each room type and excluded the rooms without
four walls in the rectangle in our experiments. For a fair
comparison, we split the preprocessed dataset into 8 : 1 : 1
for training, validation, and testing respectively.

We trained all MLPs in our framework jointly, where the
dimension of the encoded vector and hidden layers is set to be
100 and 300, respectively. The node features were updated for
three iterations before fusing them to obtain the scene features.
By randomly removing the objects in the training scenes, we
constructed the input scenes for training and enforced our
model to correctly predict the existence, location, category, and
placement of additional objects. We utilized cross-entropy loss
to train the binary classifier for existence and the multi-class
classifier for category prediction. The Lo distance between
the prediction and the ground truth is minimized to train
the location and size predictors. For the orientation in object
placement, we discretized the angles in [0, 2] into 16 values
with equal angular difference, which was predicted by a multi-
class classifier. The number of iterations set for each training is
50. We utilized the Adam optimizer with the starting learning
rate 0.001, which decayed twice at the 104, and 20, epoch
out of 30 training epochs by multiplying 0.1. The batch size
was set to 1 in all experiments.

B. Comparisons with State-of-the-art Methods

In this section, we compared our FairScene with the
state-of-the-art graph network-based scene synthesis model
SceneGraphNet [66]]. As for training and testing, the orig-
inal SceneGraphNet used SUNCG [42] dataset to train the
model. Unfortunately, the SUNCG dataset was no longer
available at the time we performed the experiment. Thus,
we retrained SceneGraphNet on the 3D-FRONT dataset. We
perform extensive experiments on the qualitative synthesized
scene visualization and quantitative perceptual study on plau-
sible scene selection. Moreover, we show the performance of
our FairScene in a wide variety of tasks including object query
and object recognition in 3D scenes, where ablation study w.r.t.
the presented techniques was conducted on object query.

Scene completion: For incomplete scenes, we iteratively
add furniture or appliances to design a plausible scene with
the automatic scene synthesis frameworks. Fig. [7]demonstrates
the synthesized scenes with different completeness across
various methods. Although SceneGraphNet can effectively
mine the object correlation via convolutional neural networks
and graphic models, it ignores the causality among them and
the prediction is significantly biased. For example, as shown
in the 4, column of the 1, row of Fig. [/l SceneGraphNet
deviates to generate the bedside nightstand next to the bed, but
violates the spatial location constraint, resulting in a reduced
scene realism. Meanwhile, the 5;;, column of the 4;;, row
of Fig. [7| demonstrates that SceneGraphNet generates plant
pots at bedside locations due to confounding effects, resulting
in biased predictions and reduced scene confidence. On the
contrary, the generated scenes of our FairScene acquire higher
plausibility compared with SceneGraphNet since we remove
the bias caused by long-tailed category distribution and the
confounder effects, especially for scenes with many objects
since the complex object interaction is usually biased. For
example, our approach weakens certain “’co-occurring” rela-
tionships between bed and nightstand to dynamically generate
scenes with higher confidence.

We also conducted a perceptual study on plausible scene
selection. The participants were asked to select the most
plausible scenes in a triplet consisting of generated scenes
from different methods and the training scenes, where the
order of scenes in each triplet is random. We employed 21
participants which were equally divided into three groups
including vision researchers, non-vision researchers and non-
technical subjects, and each participant was presented with
31 triplets. Fig. 8] demonstrates the statistics of the perceptual
study. The scenes generated by our FairScene were voted to
have higher plausibility than other scene synthesis methods
across all three groups of participants, and even achieve
slightly higher plausibility than the training scenes that are
designed by humans in the group of non-vision researchers.
Meanwhile, our proposed FairScene outperforms the baseline
in all participant groups, which demonstrates the effectiveness
of bias elimination for scene synthesis. Prior knowledge of
dataset object distribution and counterfactual inference can
effectively improve synthetic scene realism. Moreover, we
directly compare the plausibility of the scenes generated by
FairScene and other methods by forced-choice experiments.
The participants are forced to select the scenes with higher
plausibility from those generated by the two approaches. Table
[ demonstrates the percentage with standard error of forced-
choice experiments, where the percentage larger than 50%
means the preference of our method, and the comparison
with the real data in 3D-FRONT is also demonstrated. Our
method outperforms the compared baseline methods in all
room types and even shows competitive plausibility with the
real data from 3D-FRONT. The living room and dining room
scenes contain most objects compared with other room types,
where the complex object correlation causes obvious scene
bias. Therefore, the plausibility for bedrooms is significantly
enhanced by our unbiased scene generation.

Object query: Object query means predicting the category
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Fig. 7. Scene synthesis visualization results. Scenes synthesized by SceneGraphNet (the first and third row), and our FairScene (the second and fourth row)
in different completeness. Although various methods achieve similar results in the early stage, scenes generated by our FairScene obviously obtain higher
plausibility with the object increase, because removing the long-tail effects and confounders benefits indoor scene synthesis with complex object interactions.
TABLE II
Topr-K ACCURACY (%) AVERAGED OVER ALL SCENES IN THE LIVING ROOM, BEDROOM, LIBRARY, AND DINING ROOM OF DIFFERENT METHODS FOR THE
OBJECT QUERY. WE REMOVE COUNTERFACTUAL PREDICTIONS, AND INTERVENTION OPERATIONS TO EXPLORE THE EFFECTIVENESS OF EACH MODULE
SEPARATELY, AND ALSO CONDUCT ABLATION EXPERIMENTS ON THE ITERATION NUMBERS AND MESSAGE PASSING MODULES.

Methods Living Room Bedroom Library Dining Room Average
Topl | Top3 | Top5 | Topl | Top3 | Top5 | Topl | Top3 | Top5 | Topl | Top3 | Top5 | Topl | Top3 | Top5
Baseline 5870 | 78.78 | 85.00 | 67.09 | 82.00 | 87.38 | 55.15 | 75.49 | 83.65 | 68.29 | 83.41 88.61 62.31 79.92 | 86.16
Baseline-K2 59.58 | 77.74 | 85.08 | 67.44 | 81.86 | 87.06 | 51.73 | 75.98 | 84.04 | 69.42 | 8398 | 89.48 | 62.04 | 79.89 | 86.42
Baseline-K4 59.08 | 77.90 | 84.08 | 65.66 | 82.91 88.25 | 54.01 77.25 | 84.52 | 66.65 83.52 | 89.65 | 61.35 | 80.40 | 86.63
FairScene-K2 59.09 | 77.76 | 84.94 | 68.08 | 82.79 | 88.45 | 54.06 | 77.73 | 84.96 | 68.40 | 84.57 | 9047 | 62.41 80.71 87.21
FairScene-K4 61.93 | 79.64 | 86.01 68.02 | 84.17 | 89.13 | 53.05 | 77.46 | 85.08 | 68.83 83.98 | 88.69 | 62.96 | 81.31 87.23
Maxpool 65.21 83.10 | 88.67 | 64.52 | 79.35 85.60 | 48.18 | 7242 | 82.64 | 65.00 | 80.15 | 86.96 | 60.73 | 78.76 | 85.97
CatRNN 59.50 | 78.01 8520 | 67.56 | 82.52 | 87.74 | 48.88 | 74.53 | 82.77 | 68.30 | 84.14 | 90.29 | 61.06 | 79.80 | 86.50
Sum 63.31 82.39 | 88.59 | 66.34 | 80.34 | 86.67 | 47.44 | 7242 | 8242 | 62.63 | 79.34 | 87.19 | 59.93 | 78.62 | 86.22
FairScene-NL 59.97 | 78.64 | 85.59 | 67.89 | 83.03 | 87.78 | 55.55 | 77.03 | 83.95 | 69.13 83.95 | 89.49 | 63.14 | 80.66 | 86.70
FairScene-NC 59.46 | 78.74 | 85.79 | 68.78 | 84.28 | 89.62 | 53.27 | 78.22 | 85.46 | 69.55 | 84.67 | 89.82 | 62.77 | 81.48 | 87.67
FairScene-NI 56.41 75.57 | 82.01 64.00 | 83.43 | 88.73 | 47.96 | 73.21 82.51 67.84 | 83.25 | 89.51 59.05 | 78.87 | 85.69
FairScene 62.94 | 80.65 | 87.49 | 69.24 | 85.65 | 90.24 | 54.52 | 79.00 | 86.51 70.19 | 85.07 | 9045 | 64.22 | 82.59 | 88.67

of objects to be added for a query location in incomplete
scenes. We randomly removed an object in the scene, whose
location was then queried in the scene synthesis model for
object addition. We calculate the classification accuracy that
the predicted category is consistent with the ground truth of
the removed objects. We also measure the Top-K accuracy
which means the ground truth category is comprised in the
K most probable classes because some objects (a speaker
beside a TV) can be substituted by another (a plant beside
a TV) in a scene without plausibility degradation. We ran
the officially released code of the baseline methods to obtain
their performance. For a fair comparison, all 3D scenes are
projected to 2D top-down view scenes. Table [[I] demonstrates
the Top-K (K=1, 3, 5) accuracy averaged over all scenes in
each room type of different methods for the object query.
Compared with the state-of-the-art method SceneGraphNet,
our FairScene achieves increases in the average Top-1, Top-3,
and Top-5 accuracy by 1.92%, 2.67%, and 2.51%, respec-

tively. For specific room categories, our proposed FairScene
improves the Top-1 accuracy by 4.24%, 2.15%, —0.63%, and
1.90% respectively compared to the baseline. The performance
improvement is more significant for the living room, bedroom,
and dining room which room layouts contain more distinctive
features. For example, chairs or tables are often distributed
around the table which denotes “surrounding” relationships.
The correlation becomes more complex and the generated
scenes are more biased in conventional methods. The contrast
is with libraries that have fewer objects and simpler scenes.
Since the library contains only the main furniture such as
bookshelves, chairs, tables, etc., it cannot form complex re-
lationships due to the limitation of the number of furniture.
Our FairScene underperforms SceneGraphNet on the samples
from the library because there is no significant bias from the
layout of the library scene.

Table [II] also demonstrates the performance of FairScene
variants. We evaluated the FairScene without object category
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Fig. 8. Perceptual study on plausible scene selection, where the participants
were divided into three groups: vision researchers, non-vision researchers,
and non-technical subjects. The scenes generated by our FairScene were
considered to have much higher plausibility than other scene synthesis
methods, and even slightly higher than the training scenes in the group of

non-vision researchers.
TABLE III

COMPARISON OF OBJECT CLASSIFICATION ACCURACY (%) WITH 3D
SHAPE RECOGNITION METHODS AND CONTEXT-BASED RECOGNITION OF
STATE-OF-THE-ART SCENE SYNTHESIS METHODS. LIVING., BED. AND
DINING. MEAN LIVING ROOM, BEDROOM, AND DINING ROOM
RESPECTIVELY.

Methods Living. Bed. Library Dining. [ Average
PointNet++ 4131 3755 36.89  44.61 40.09
SceneGraphNet 61.82  70.37  58.25 71.49 65.48
FairScene 64.61 7293  59.27  73.82 67.66

distribution calibration (NL), without confounder removal
(NC), and without importance weights for node feature merg-
ing (NI), with two iterations (K2) and four iterations (K4) for
node feature update. We also perform ablation experiments
on multiple message transfer units to explore the optimal
network configuration, the original GRU module is replaced
with CatRNN, Maxpool, and Sum respectively. By comparing
FairScene-NL, FairScene-NC, and FairScene, we conclude that
long-tailed effects removal and confounder elimination both
enhances the model plausibility, and integrating them further
increases the top-k accuracy as the bias is thoroughly removed.
NL and NC have made considerable contributions to the
elimination of synthetic scene bias from different perspectives,
respectively. By observing results from FairScene-NI, we
draw the conclusion that lacking importance weights for node
feature fusion when generating scene features significantly
degrades the performance, since the contribution of various
objects to the scene is very different. Node feature fusion
weights provide more discriminative information to the net-
work compared to NL and NC. Constructing only through
dataset prior knowledge and counterfactual samples cannot
deeply extract the overall contextual information of the scene.
The performance of FairScene-K2 and Baseline-K2 indicates
that insufficient iterations for node feature updates fail to pass
informative messages among different nodes. Although the
smaller number of iterations improves the accuracy in the
living room scenario, the average accuracy of Top-1 decreases
by 0.27% and 1.81%, respectively. We also found that the
number of iterations is not as large as possible, the increase
in the number of single iterations significantly increases the
computational cost of the model while the accuracy improve-
ment is weak. The performance of FairScene-K4 and Baseline-

TABLE IV
COMPARISON RESULTS OF 3D SCENE SEMANTIC SEGMENTATION MODELS
ON DIFFERENT TRAINING DATA.

Methods Point acc [ Class acc [ Point mIoU
PointNet++ 74.15 58.37 47.33
PointNet++ add SG 76.16 58.84 48.70
PointNet++ add Ours 77.59 61.94 51.45
PointConv 71.69 63.15 42.18
PointConv add SG 72.55 64.34 42.56
PointConv add Ours 73.28 64.82 4341

K4 indicates that more iterations lead to a 0.96% and 1.26%
decrease in Top-1 accuracy, respectively. Considering both
computational cost and model performance, we set the number
of iterations(K) to 3. Comparing CatRNN and FairScene, we
know that the update gates and reset gates in GRU sizably
strengthen the informativeness of feature aggregation in node
feature updates. Comparing Maxpool, Sum, and CatRNN,
we can obtain that the simple feature information transfer
operation loses scene context information, resulting in a 0.33%
and 1.33% decrease in accuracy Top-1, respectively. Although
Maxpool is efficient in updating information with Sum and
achieves the highest accuracy in the living room scenario with
2.27% higher Top-1 accuracy than the GRU module, its Top-
1 accuracy decreases by 6.34% for simple scenarios such as
the library. Combining the performance of several scenes, we
selected GRU as the information transfer unit model.

Object recognition in 3D scenes: Since recognizing objects
in 3D scenes by 3D shape processing architectures is sensitive
to object appearance variance, considering the context in
the scenes enhances the robustness of object recognition in
3D scenes. By multiplying the category probability predicted
by conventional 3D shape processing architectures and that
produced by our object query, we acquire the robustness of
object recognition results in 3D scenes. For each object in our
dataset, we utilized PointNet++ [35] to obtain the category
probability predicted by 3D shape processing architectures,
and then we leveraged different scene synthesis methods to
predict the context-based object probability by removing the
objects in the scene. As for training, we first iterate through
all the mesh files for each category of rooms based on the
parsed room furniture dictionary. Then, we sampled each
furniture instance mesh file using the farthest point sampling
provided by PointNet++ to obtain the point cloud data and
compose the training and test datasets. Table illustrates
the average accuracy of different methods for various room
types. Compared with the selected baseline, SceneGraphNet
significantly improves the accuracy by employing the rich
object interaction information in complex scenes, with an
average improvement of 25.39%. Integrating our FairScene
and PointNet++ yields the highest accuracy due to the category
distribution calibration and confounder elimination with an
average improvement of 25.57% recognition accuracy, which
is ignored in SceneGraphNet with biased object predictions.
The above experimental results further demonstrate that the
dataset prior knowledge and counterfactual reasoning can
eliminate the confusion effect of indoor complex scenes.

Synthetic dataset for pre-training: Since training 3D
scene semantic segmentation requires a large number of
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Fig. 9. Visualization results of PointNet++ with different training data
settings. We selected a total of three settings: original ScanNet data, Scene-
GraphNet synthetic data with ScanNet (ScanNet + SG), and FairScene
synthetic data with ScanNet (FairScene + Ours). Using pre-trained model
fine-tuning can further improve the classification accuracy of the model.

training samples to meet the deep neural network learning
requirements, we employ indoor scene synthesis to form a
pre-training dataset to further improve the performance of the
models on other publicly available datasets. We selected the
widely adopted PointNet++ and PointConv [53]] as the baseline
networks. Meanwhile, we selected the ScanNet [9] dataset
to fine-tune the pre-training model. For the synthetic dataset,
we first restore the synthetic room structure and reconstruct
the entire scene based on the predicted categories, poses, and
poses with the CAD model provided by 3D-FRONT. Then,
we generate the boundary structure information such as floor
and wall for the newly synthesized room based on the original
structure of the room provided by 3D-FRONT. In the end, we
obtained the entire scene point cloud from the rendered CAD
model by furthest point sampling and labeled the categories
according to furniture labels, thus forming a synthetic indoor
scene understanding dataset. The selected baseline network is
first pre-trained on the synthetic dataset and then fine-tuned on
the ScanNet dataset to verify the performance of the synthetic
dataset. Table [[V] demonstrates the performance of the pre-
training models, where add SG represents using SceneGraph-
Net to synthesize the pre-training dataset, add Ours means
using FairScene to synthesize the dataset. No addition means
that the original ScanNet is adopted to train the models.
Compared with the original dataset, the dataset generated using
SceneGraphNet resulted in a 1.37% and 0.38% improvement
in Point mloU for PointNet++ and PointConv, respectively.
Meanwhile, using FairScene improved 4.12% and 1.23%,
respectively. The above experimental results illustrate that the
synthetic scene pre-training model can improve the model
performance, and also point out that the layout generated by
our proposed method is more in line with the real scene.
Fig. 0] demonstrates the results of PointNet++ on different
settings for the ScanNet segmentation task. For example, the
second and third columns of the visualization in the first row
of Fig. 0] visually illustrate that the pre-training model can

provide rich contextual information to further constrain the
prediction, the chair in the bedroom is correctly identified
by the model with the help of the synthetic dataset. The
second row of Fig . [0 illustrates that the accuracy of the sofa
segmentation in the living room is improving influenced by the
contextual information resulting from the pre-training dataset.
Meanwhile, the use of FairScene synthetic data can provide
accurate a priori information guidance (higher accuracy of
chair segmentation), which illustrates that the scene layout
generated by our proposed FairScene is more similar to the
real scene.

V. CONCLUSION AND DISCUSSION

In this paper, we have presented an unbiased graph neural
network learning method called FairScene for indoor scene
synthesis. The proposed FairScene calibrates the long-tailed
category distribution by subtracting the counterfactual predic-
tions of default input and eliminates the confounder effects
in the datasets by backdoor path adjustment so that unbiased
object interaction is mined for plausible scene generation.
Extensive experiments on a wide variety of vision applications
including scene completion, object query, and object recogni-
tion in scenes show the superiority of our proposed FairScene.
Meanwhile, the proposed approach can also synthesize pre-
training data for 3D scene understanding tasks. Though the
indoor scene bias becomes significant for rooms with complex
object entanglement, our method may not be applicable for
scenes with fewer objects such as the library. Meanwhile, only
considering the causality between two objects cannot eliminate
the bias completely, since the high-order interaction among a
group of objects may also contribute to the scene bias. We
consider further work to reduce the bias of the synthesis scene
by incorporating more furniture information (e.g. material,
style), while further enhancing the realism of the synthetic
scenes.
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